12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

FEATURES

- 12.5 mm square single turn panel control

- Five shaft diameters and 29 terminal styles

RoHS

- Multiple assemblies - up to seven modules COMPLANT
- Tests according to CECC 41000 or IEC 60393-1
- GAM T1
- P11S version for industrial, military, and aeronautics applications
- P11A version for professional audio applications
- Low current compatibility
- Shaft and panel sealed version
- Up to twenty-one indent positions
- Rotary and push/push switch options
- Concentric shafts
- Custom designs on request
- Trimmer version T11 (see document no. 51021)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

QUICK REFERENCE DATA

Multiple module	Up to 7 modules
Switch module	Yes
Detent module	Yes
Special electrical laws	A: linear, L: logarithmic, F: reverse logarithmic and others see specification
Sealing level	IP 64
Lifespan	50K cycles

Single module, single shaft, vertical mounting, PC pins with support plate, metric bushing and shaft

Dual modules, single shaft, PC pins with front support plates, imperial bushing and shaft

P11S, P11A
Vishay Sfernice

GENERAL SPECIFICATIONS

ELECTRICAL (initial)							
		P11A			P11S		
Resistive element		Conductive plastic			Cermet		
Electrical travel		$270^{\circ} \pm 10^{\circ}$			$270^{\circ} \pm 10^{\circ}$		
Resistance range ${ }^{(1)}$	Linear taper Non-linear taper	$\begin{gathered} 1 \mathrm{k} \Omega \text { to } 1 \mathrm{M} \Omega \\ 470 \Omega \text { to } 500 \mathrm{k} \Omega \end{gathered}$			$\begin{gathered} \hline 20 \Omega \text { to } 10 \mathrm{M} \Omega \\ 100 \Omega \text { to } 2.2 \mathrm{M} \Omega \end{gathered}$		
Tolerance	Standard On request	$\begin{aligned} & \pm 20 \% \\ & \pm 10 \% \end{aligned}$			$\begin{gathered} \pm 20 \% \\ \pm 5 \% \text { or } \pm 10 \% \end{gathered}$		
Taper							
Circuit diagram							
Power rating at $70{ }^{\circ} \mathrm{C}$	Linear taper Non-linear taper Multiple assemblies	0.5 W at $+70^{\circ} \mathrm{C}$0.25 W at $+70^{\circ} \mathrm{C}$0.25 W at $+70^{\circ} \mathrm{C}$ per module			1 W at $+70^{\circ} \mathrm{C}$0.5 W at $+70^{\circ} \mathrm{C}$0.5 W at $+70^{\circ} \mathrm{C}$ per module		
Temperature coefficient (typical)		$\pm 500 \mathrm{ppm}$			$\pm 150 \mathrm{ppm}$		
Limiting element voltage		350 V			350 V		
End resistance (typical)		2Ω			2Ω		
Contact resistance variation (typical)	Linear taper	1 \%			2% or 3Ω		
Independent linearity (typical)	Linear taper	$\pm 5 \%$			± 5 \%		
Insulation resistance		$10^{6} \mathrm{M} \Omega \mathrm{min}$.			$10^{6} \mathrm{M} \Omega \mathrm{min}$.		
Dielectric strength		$1500 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.			$1500 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.		
Attenuation		90 dB max./0.05 dB min.			-		
Mechanical endurance		50000 cycles			50000 cycles		

Note

(1) Consult Vishay Sfernice for other ohmic values

MECHANICAL (initial)	
Mechanical travel	$300^{\circ} \pm 5^{\circ}$
Operating torque (typical)	
Single and dual assemblies Three to seven modules (per module)	0.4 Ncm to 1.8 Ncm max. (0.57 oz.-inch to 2.55 oz.-inch max.) 0.2 Ncm to 0.3 Ncm max. (0.28 oz.-inch to 0.42 oz.-inch max.)
End stop torque (all bushing except G and concentric shaft configuration) $3 \mathrm{~mm}, 4 \mathrm{~mm}$, and $1 / 8^{\prime \prime}$ dia. shafts 6 mm and $1 / 4^{\prime \prime}$ dia. shafts	35 Ncm max. (2.9 lb-inch max.) 80 Ncm max. (6.8 lb-inch max.)
End stop torque for bushing G	
End stop torque for concentric shaft configuration 3 mm and $1 / 8^{\prime \prime}$ dia. shafts 6 mm and $1 / 4^{\prime \prime}$ dia. shafts	25 Ncm max. (2.1 lb-inch max.) 80 Ncm max. (6.8 lb-inch max.)
Tightening torque $6 \mathrm{~mm}, 7 \mathrm{~mm}$, and $1 / 4^{\prime \prime}$ dia. bushings 10 mm and $3 / 8^{\prime \prime}$ dia. bushings	150 Ncm max. (13 lb-inch max.) 250 Ncm max. (21 lb-inch max.)
Weight	7 g to 9 g per module (0.25 oz . to 0.32 oz .)
ENVIRONMENTAL	
	P11A P11S
Operating temperature range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Climatic category	$55 / 125 / 21-55 / 125 / 56$
Sealing	IP64 IP64
MARKING \quad PACKAGING	
- Potentiometer module Vishay logo, SAP code of ohmic value, tolerance in \%, variation law, manufacturing date (four digits), " 3 " for the lead 3, product series (P11S, P11A) - Switch module Version, manufacturing date (four digits), "c" for common lead - Indent module Version, manufacturing date (four digits)	- Box

PERFORMANCES				
TESTS	CONDITIONS	TYPICAL VALUE AND DRIFTS		
			P11S	P11A
Electrical endurance	1000 h at rated power $90^{\prime} / 30^{\prime}$ - ambient temp. $70^{\circ} \mathrm{C}$	$\Delta R_{T} / R_{\mathrm{T}}$ Contact resistance variation	$\begin{aligned} & \pm 2 \% \\ & \pm 4 \% \end{aligned}$	$\begin{gathered} \pm 10 \% \\ \pm 5 \% \end{gathered}$
Change of temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 5$ cycles	$\Delta R_{T} / R_{\text {T }}$	± 0.2 \%	± 0.5 \%
Damp heat, steady state	$+40^{\circ} \mathrm{C}, 93$ \% relative humidity P11S: 56 days, P11A: 21 days	$\begin{gathered} \Delta R_{\mathrm{T}} / R_{\mathrm{T}} \\ \text { Insulation resistance } \end{gathered}$	$\begin{aligned} & \pm 2 \% \\ > & 1000 \mathrm{M} \Omega \end{aligned}$	$\begin{gathered} \pm 5 \% \\ >10 \mathrm{M} \Omega \end{gathered}$
Mechanical endurance	50000 cycles	$\Delta R_{\mathrm{T}} / R_{\mathrm{T}}$ Contact resistance variation	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \end{aligned}$	$\begin{aligned} & \pm 6 \% \\ & \pm 4 \% \end{aligned}$
Climatic sequence	Dry heat at $+125^{\circ} \mathrm{C} /$ damp heat cold $-55^{\circ} \mathrm{C} /$ damp heat, 5 cycles	$\Delta R_{\mathrm{T}} / R_{\text {T }}$	$\pm 1 \%$	-
Shock	50 g's, 11 ms 3 shocks - 3 directions	$\begin{gathered} \Delta R_{\mathrm{T}} / R_{\mathrm{T}} \\ \Delta R_{1-2} / R_{1-2} \end{gathered}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$
Vibration	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 55 \mathrm{~Hz} \\ 0.75 \mathrm{~mm} \text { or } 10 \mathrm{~g} \text { 's, } 6 \mathrm{~h} \end{gathered}$	$\begin{gathered} \Delta R_{T} / R_{T} \\ \Delta V_{1-2} / N_{1-3} \\ \hline \end{gathered}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$

Note

- Nothing stated herein shall be construed as a guarantee of quality or durability

ORDERING INFORMATION (part number)

STANDARD RESISTANCE ELEMENT DATA												
STANDARD RESISTANCE VALUES	P11S CERMET						P11A CONDUCTIVE PLASTIC					
	LINEAR TAPER			NON-LINEAR TAPER			LINEAR TAPER			NON-LINEAR TAPER		
	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER
Ω	W	V	mA									
22	1	4.69	213									
47	1	6.86	146									
50	1	7.07	141									
100	1	10.0	100	0.5	7.07	70.7						
220	1	14.8	67.4	0.5	10.5	47.7						
470	1	21.7	46.1	0.5	15.3	32.6						
500	1	22.4	44.7	0.5	15.8	31.6				0.25	11.2	22.4
1K	1	31.6	31.6	0.5	22.4	22.4	0.5	22.4	22.4	0.25	15.8	15.8
2.2 K	1	46.9	21.3	0.5	33.2	15.1	0.5	33.2	15.1	0.25	23.5	10.7
4.7K	1	69	14.5	0.5	48.5	10.3	0.5	48.5	10.3	0.25	34.3	7.29
5K	1	70.7	14.1	0.5	50.0	10.0	0.5	50.0	10.0	0.25	35.4	7.07
10K	1	100	10.0	0.5	70.7	7.07	0.5	70.7	7.07	0.25	50.0	5.00
22K	1	148	6.74	0.5	105	4.77	0.5	105	4.77	0.25	74.2	3.37
47K	1	217	4.61	0.5	153	3.26	0.5	153	3.26	0.25	108	2.31
50K	1	224	4.47	0.5	158	3.16	0.5	158	3.16	0.25	112	2.24
100K	1	316	3.16	0.5	224	2.24	0.5	224	2.24	0.25	158	1.58
220 K	0.56	350	1.59	0.5	332	1.51	0.5	332	1.51	0.25	235	1.07
470K	0.26	350	0.75	0.26	349	0.74	0.26	350	0.74	0.25	343	0.73
500K	0.25	350	0.70	0.25	350	0.71	0.25	350	0.71	0.25	350	0.71
1M	0.12	350	0.35	0.12	350	0.34	0.12	350	0.34			
2.2 M	0.06	350	0.16	0.056	350	0.16						
4.7M	0.03	350	0.074									
5M	0.02	350	0.070									
10M	0.01	350	0.035									

ORDERING INFORMATION (part number)

PANEL AND SHAFT SEALED: BUSHING G

All models have the same bushing Dia. $8 \mathrm{~mm}-\mathrm{L} 8 \mathrm{~mm}$

BUSHING D AND E WITH LOCKING NUT

Notes

- Hardware supplied in separate bags
- Slotted bushing for locking nut option

P11S, P11A

ORDERING INFORMATION (part number)

LOCATING PEGS (anti-rotation lug)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides. Four set positions are available, clock face orientation: 12, 3, 6, 9 .

All P11 bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation lug is not necessary.

CODE	VERSION	BUSHING A, B, C, D, E, T, Q	BUSHING F, \mathbf{V}	EFFECTIVE HIGH PEG
	$\varnothing \mathrm{d} \mathrm{mm}$	2	2	0.7
	L mm	6.2	6.2	
B	$\varnothing \mathrm{d} \mathrm{mm}$	2	2	0.7
	L mm	7.75	7.75	
C	$\varnothing \mathrm{d} \mathrm{mm}$	-	3.5	1.1
	L mm	-	13.5	

Locating pegs are supplied in separate bags with nuts and washers

ORDERING INFORMATION (part number)

SHAFTS in millimeters ± 0.5
The shaft length is always measured from the mounting face. Standard shafts are designed by a 3 letters code (3 digits). Shafts slots are aligned to $\pm 10^{\circ}$ of the wiper position.
All standard shafts are slotted except flatted and splined, see exeptions for bushing.

FLATTED SHAFT

Bushing:	F	Bushing:	A
Shaft:	GHF	Shaft:	BGF

BUSHING: Q
SPLINED SHAFT: FHK

CUSTOM SHAFTS
When special shafts are required - flat, threated ends, special shaft lengths, etc. a drawing is required.

STANDARD COMBINATION OF SHAFT STYLES AND BUSHINGS							
SHAFT DIA.	BUSHING CODE	SHAFT LENGTH AND STYLE AVAILABLE IN STANDARD (others on request)					
3	T	AAS	ABS	AJS			
3.17	A	BAS	BBS	BGS	BGF	BHS	BJS
3.17	B	BBS	BGS	BHS	BJS		
3.17	C	BGS	BHS	BJS			
4	Q	EAS	EBS	EJS	FHK		
6	V	FGS	FLS	FRS			
6.35	F	GGS	GHS	GJS	GLS	GOS	GHF

FIRST DIGIT	
\mathbf{Y}	Soldering lugs
\mathbf{X}	PCB pins
\mathbf{Z}	PCB pins with front support plate
\mathbf{A}	PCB pins with front and back support plates
\mathbf{W}	PCB pins - vertical mounting with 2 extra pins -1 module only

SECOND DIGIT	
$\mathbf{0}$	$\mathrm{Y}=4.65\left(0.183^{\prime \prime}\right)$ $\mathrm{A}, \mathrm{X}, \mathrm{Z}, \mathrm{W}=5.08\left(0.200^{\prime \prime}\right)$ pin spacing pins section $0.9 \times 0.3\left(0.035^{\prime \prime} \times 0.012^{\prime \prime}\right)$
$\mathbf{1}$	$2.54(0.100 ")$ pin spacing pin section $0.6 \times 0.3\left(0.024^{\prime \prime} \times 0.012^{\prime \prime}\right)$
$\mathbf{2}$	$5.08\left(0.200^{\prime \prime}\right)$ pin spacing pins section $0.6 \times 0.3\left(0.024^{\prime \prime} \times 0.012^{\prime \prime}\right)$

THIRD DIGIT	
$\mathbf{0}$	$5.08\left(0.200^{\prime \prime}\right)$ space between modules
$\mathbf{3}$	$7.62\left(0.300^{\prime \prime}\right)$ space between modules
$\mathbf{4}$	$10.16\left(0.400^{\prime \prime}\right)$ space between modules

DIMENSIONS in millimeters (inches) $\pm 0.5 \mathrm{~mm}\left(\pm 0.02^{\prime \prime}\right)$										
SOLDER LUGS Y PCB										
	0)	\rightarrow	$\begin{array}{r} 13 \\ -(0.51 \\ \hline \\ \hline \\ 4.7 \\ -(0.18 \end{array}$	$\left(\begin{array}{c} 5 \\ (0.197) \end{array}\right.$				5.08 (0.200)	X1 $\mid-_{0.1}^{2.5}$	
FRONT AND REAR SUPPORT	IZON ATES support - - 响	L MO		SUPP	T PLAT					
THE POSITION OF EACH MODULE IS FREE										
BUSHINGS	G	T	Q	V	A	B	C	D	E	F
	DIMENSIONS mm (\pm 0.5)				DIMENSIONS INCHES (\pm 0.02)					
E Leads Z00	3.15	1.85	1.85	3.85	0.071	0.071	0.071	0.071	0.071	0.150
E Leads Z1. Z2. A..	2.8	1.6	1.6	3.6	0.063	0.063	0.063	0.063	0.063	0.140
F	Leads Z0.: 5.08 (0.200")				Leads A.. Z1. Z2.: 3.81 (0.150")					
J Leads X.. Y..	6.7	5	5	7	0.200	0.200	0.200	0.200	0.200	0.278
E Leads Z0. with Rotary Switch	1.45	0.15	0.15	2.15	0.006	0.006	0.006	0.006	0.006	0.0846

ORDERING INFORMATION (part number)

SPECIAL CODES GIVEN BY VISHAY

Option available:

- Custom shaft
- Custom design on request
- Specific linearity
- Specific interlinerarity
- Specific taper
- Multiple assemblies with various modules

P11S, P11A

P11 OPTION: ROTARY SWITCH MODULES

- Rotary switches
- Current up to 2 A
- Actuation CW or CCW position
- Sealing IP60

MODULES: RS ON/OFF SWITCH
 RSI CHANGEOVER SWITCH

The position of each module is free.
RS and RSI rotary switches are housed in a standard P11 module size $12.7 \mathrm{~mm} \times 12.7 \mathrm{~mm} \times 5.08 \mathrm{~mm}\left(0.5^{\prime \prime} \times 0.5^{\prime \prime} \times 0.2^{\prime \prime}\right)$. They have the same terminal styles as the assembled electrical modules.
An assembly can comprise 1 or more switch modules.
Switch actuation is described as seen from the shaft end.
D: Means actuation in maximum CCW position
F: Means actuation in maximum CW position
The switch actuation travel is 25° with a total mechanical travel of $300^{\circ} \pm 5^{\circ}$ and electrical travel of electrical modules is $238^{\circ} \pm 10^{\circ}$.
Leads finish: Gold plated

RDS SINGLE POLE SWITCH, NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.
RSF SINGLE POLE SWITCH, NORMALLY OPEN
In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

In full CCW position, the contact is made between 3 and 2 and open between 3 and 1. Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

In full CW position, the contact is made between 1 and 2 and open between 1 and 3 . Switch actuation (CCW direction) reverses these positions.

SWITCH SPECIFICATIONS	
Switching power maximum	$62.5 \mathrm{VA} v$ $15 \mathrm{VA}=$
Switching current maximum	0.25 A 250 V v $0.5 \mathrm{~A} 30 \mathrm{~V}=$
Maximum current through element	2 A
Contact resistance	$100 \mathrm{~m} \Omega$
Dielectric strength	Terminal to terminal
	Terminal to bushing
Maximum voltage operation	1000 V RMS
Insulation resistance between contacts	$2000 \mathrm{~V}_{\text {RMS }}$
Life at $\mathrm{P}_{\text {max. }}$	250 V v
Minimal travel	$10^{6} \mathrm{M} \Omega$
Operating temperature	10000 actuations

ELECTRICAL DIAGRAM

Note
(1) Common

ORDERING INFORMATION (First order only)

RSID

RSD
RSF
RSID
RSIF

SPST: Single pole, open switch in CCW position - 2 pins
SPST: Single pole, open switch in CW position - 2 pins
SPDT: Single pole, changeover switch in CCW position - 3 pins
SPDT: Single pole, changeover switch in CW position - 3 pins

P11S, P11A

P11 OPTION: PUSH/PUSH OR MOMENTARY/PUSH SWITCH MODULES

- Push/push or momentary push
- Current up to 2 A
- Sealing IP60

MODULES: PUSH/PUSH SWITCH RSPP
 MOMENTARY/PUSH SWITCH RSMP

They have to be the last element of potentiometer Options:

2 reversing switches F2 4 reversing switches F4

$$
6 \text { reversing switches F6 } 8 \text { reversing switches F8 }
$$

Not available with panel sealed option
Number of modules before the switch limited to 3 modules.
Length of shaft (FMF) 25 mm maximum.
RSPP F2: PUSH/PUSH SWITCH WITH TWO REVERSING SWITCHES
Idle position: The contact is made between 1 and 2 and a and b. It is open between 2 and 3 and b and c.

Pushed position: The contact is made between 2 and 3 and b and c . It is open between 1 and 2 and a and b .

SWITCH SPECIFICATIONS	
Switching power maximum	$50 \mathrm{VA} v$
Switching current maximum	$0.5 \mathrm{~A} v$
Maximum current through element	2 A
Contact resistance	$100 \mathrm{~m} \Omega$
Dielectric strength	Terminal to terminal
	Terminal to bushing
Maximum voltage operation	$2000 \mathrm{~V}_{\mathrm{RMS}}$
Insulation resistance between contacts	$250 \mathrm{~V} v$
Life at $\mathrm{P}_{\text {max. }}$	$10^{3} \mathrm{M} \Omega$
Minimal travel	100000 actuations
Operating temperature	3.3 mm to 4.7 mm

ELECTRICAL DIAGRAM
RSPP F2

ORDERING INFORMATION (First order only for special code creation)
RSPP

RSPP: Push/push
F2: 2 reversing switches (standard version)
RSMP: Momentary/push

F4: 4 reversing switches
F6: 6 reversing switches
F8: 8 reversing switches

P11 OPTION: CONCENTRIC SHAFTS

The CC concentric shaft versions allies the total flexibility of the P11 modular system to the advantage of having two separate shafts.
The outer 6 mm or $1 / 4^{\prime \prime}$ or $1 / 8^{\prime \prime}$ dia. shaft drives the modules situated immediately behind the panel, before the spacer module.
The inner 3 mm or $1 / 8^{\prime \prime}$ or 0.07 " dia. shaft drives the modules situated after the spacer module.
Spacer is available with a choice of two spacer thickness:
5.08 mm designations or 2.54 mm designation. See dimensional drawing

BUSHING CODE	DIAMETER	LENGTH L	SHAFT STYLE	DIAMETER	LENGTH I	SHAFT STYLE
	V	6	16	R	3	28.5
F	$6.35\left(1 / 4^{\prime \prime}\right)$	16	R	R	R	
A	$3.17\left(1 / 8^{\prime \prime}\right)$	$12.7\left(1 / 2^{\prime \prime}\right)$	R	$1.8\left(0.07 "^{\prime \prime}\right)$	$22.2\left(7 / 8^{\prime \prime}\right)$	R

2.54: Mechanical spacer of 2.54 mm
5.08: Mechanical spacer of 5.08 mm

Customer should define witch modules is driven by each shaft (see example of ordering information at the end of the datasheet)

P11 OPTION: DETENT MODULES

The detents mechanism is housed in a standard P11 module. Up to 21 detent positions available.
Count detents as follows: 1 for CCW position, 1 for full CW position, plus the other positions forming equal resistance increments (linear taper) - not equal angles.
Available:
CVID - CVIF - CVIM
CV3 - CV11 - CV21

Mechanical endurance: 10000 cycles
ORDERING INFORMATION (First order only for special code creation)

CV1M

CV1M 1 detent at half travel

CV1M J84 CV1M with accuracy of center point $\pm 2 \%$ (all tapers except S)
CV1D 1 detent at CCW position
CV1F 1 detent at CW position
CV3 3 detents
CV11 11 detents
CV21 21 detents

P11 OPTION: NEUTRAL MODULES "EN"

Neutral or screen module is housed in a standard P11 module.
It is used as a screen between two electrical modules.
The leads can be connected to ground.
ORDERING INFORMATION (First order only for special code creation)

EN

EN
Neutral module

P11S, P11A
Vishay Sfernice

P11 OPTION: CENTER CURRENT TAP "J"

The extra terminal is a solder lug connected at 50% of electrical travel and siluated in the potentiometer module opposite the terminals.
Center tap presents a short circuit of 11° of travel.

- Sealing IP60

J
Center tap

P11 OPTION: SPECIAL LINEARITY - CONFORMITY

ORDERING INFORMATION (First order only)

The independent linearity (conformity for the non-linear laws) is the maximum gap $\Delta \mathrm{V}$ between the actual variation curve and the theorical variation curve the nearest to it. The linearity and the conformity are expressed in percentage of the total applied voltage E

$$
\text { linearity conformity }=\frac{ \pm \Delta \mathrm{V}_{\max }}{\mathrm{E}}
$$

They are measured over 90% of actual electrical travel (centered).
On request linearity can be guaranteed in linear taper.

J123

J123 Independent linearity ± 3 \% (linear law)
J145 Independent linearity ± 2 \% (linear law)
For other request, contact us.

P11 OPTION: SPECIAL INTERLINEARITY - INTERCONFORMITY

It is the maximum deviation between the actual voltage outputs of 2 or more pot modules in the same assembly. It is expressed as a percentage of the total applied voltage, or in dB attenuation.

Interlinearity is measured between 2 pot modules, over 20 to 90% of the attenuation.
The interlinearity or interconformity is expressed as a percentage of the total applied voltage:

$$
1 \%=\frac{|C|}{E}
$$

Or in decibels by comparison between outputs V1 and V2

$$
\mathrm{IdB}=20 \log \frac{V_{1}}{V_{2}}
$$

ORDERING INFORMATION (First order only)
J44
For other request, contact us.

EXAMPLES OF FIRST ORDER INFORMATION

FIRST EXAMPLE: Triple module (switch is counted as a module)

ORDERING INFORMATION:
PART NUMBER
SHAFT AND BUSHING

SECOND EXAMPLE: Concentric shaft with 2 modules on each shaft

ORDERING INFORMATION:
PART NUMBER
SHAFT AND BUSHING
MODULE NO. 1
MODULE NO. 2
MODULE NO. 3
MODULE NO. 4
MODULE NO. 5

Driven by outer shaft
Driven by outer shaft
Mechanical spacer 5.08 mm
Driven by inner shaft
Driven by inner shaft

PART NUMBER DESCRIPTION (used on some Vishay document or label, for information only)

P11S	2	Q	0	EA	S	Y00	10K	20 \%	A			e3
T	L	L	$\underline{1}$	+	1]	I	L	,			1
MODEL	MODULES	BUSHING	$\begin{gathered} \text { LOCATING } \\ \text { PEG } \end{gathered}$	SHAFT	SHAFT STYLE	LEADS	VALUE	TOL.	TAPER	SPECIAL	SPECIAL	$\begin{aligned} & \text { LEAD } \\ & \text { (Pb)-FREE } \end{aligned}$

RELATED DOCUMENTS

APPLICATION NOTES
Potentiometers and Trimmers
Guidelines for Vishay Sfernice Resistive and Inductive Components

www.vishay.com/doc?51001	
	www.vishay.com/doc?52029

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

